TWFE Metrics Discussion Group: Implementing Callaway & Sant'Anna (2020) DID Estimator

Apr 29, 2021

Olivia Healy

School of Education & Social Policy

Northwestern University

NOTE: current as of 4/29/2021; information on resources and package availability likely to change

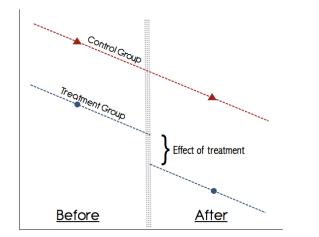
Current state of the literature *(incomplete, but a start)*

Why is staggered DiD a problem?

How do we do things differently?

Why is staggered DiD a problem?

Two reasons, according to Goodman-Bacon (2021)

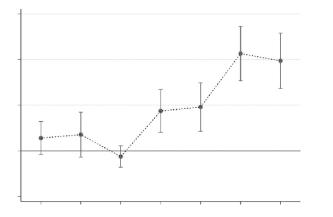

- 1. Variance weighting (implicit in OLS)
- 2. Use of past treated units as controls for later-treated units

Why is staggered DiD a problem?

Two reasons, according to Goodman-Bacon (2021)

- 1. Variance weighting (implicit in OLS)
- 2. Use of past treated units as controls for later-treated units

Goodman-Bacon (2021) <-- DiD with constant post-period effects


Why is staggered DiD a problem?

Two reasons, according to Goodman-Bacon (2021)

- 1. Variance weighting (implicit in OLS)
- 2. Use of past treated units as controls for later-treated units

Sun & Abraham (2020) <--- Focus on event-study DiD (dynamic post period effects)

Show that event-study fixes problem #1 but not #2

Current state of the literature:

1. Why is staggered DiD a problem?

→Goodman-Bacon (2020) provides tools to diagnose how bad of a problem staggered DiD is in your setting.

→That said, we know there's some degree of a problem, so let's move onto the fix.

Current state of the literature:

1. Why is staggered DiD a problem?

→Goodman-Bacon (2020) provides tools to diagnose how bad of a problem staggered DiD is in your setting.

→That said, we know there's some degree of a problem, so let's just move onto the fix.

2. How do we do things differently?

Current options for doing things differently (Baker, 2020)

- 1. Stacked DiD Estimator
- 2. Sun & Abraham (2020) Estimator
- 3. Callaway & Sant'Anna (2020) Estimator

Current options for doing things differently (Baker, 2020)

- 1. Stacked DiD Estimator
- 2. Sun & Abraham (2020) Estimator
- 3. Callaway & Sant'Anna (2020) Estimator

The are the **same** in that they all:

- Rely on event-study models not pooled DiD
- Modify the set of units that act as effective controls in the estimation process

Current options for doing things differently (Baker, 2020)

- 1. Stacked DiD Estimator
- 2. Sun & Abraham (2020) Estimator
- 3. Callaway & Sant'Anna (2020) Estimator

They **vary** ONLY in terms of:

- Which units are used as effective controls (for treatment cases)
- How covariates are incorporated into the analysis

Current options for doing things differently (Baker, 2020)

- 1. Stacked DiD Estimator
- 2. Sun & Abraham (2020) Estimator
- 3. Callaway & Sant'Anna (2020) Estimator

They vary ONLY in terms of:

- Which units are used as effective controls (for treatment cases)
- How covariates are incorporated into the analysis

Baker (2020) suggests you implement one of these three methods to test robustness of inferences. My take is that Callaway & Sant'Anna allows for the most flexibility + customization

Callaway & Sant'Anna Estimator:

1. Estimate group-time effects: unique estimates per cohort of units treated at the same point in time

- 2. Identify appropriate comparison units for each grouptime treated group
 - Pairings of units in the treatment and comparison groups per group-time treatment

Implement the Callaway & Sant'Anna Estimator in R

Stata wrappers by: Jonathan Roth & Nick Huntington-Klein

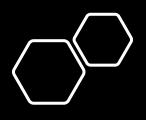
- <u>https://github.com/jonathandroth/staggered#stata-implementation</u>
- <u>https://github.com/NickCH-K/did</u>

Implement the Callaway & Sant'Anna Estimator in R

Stata wrappers by: Jonathan Roth & Nick Huntington-Klein

- https://github.com/jonathandroth/staggered#stata-implementation
- https://github.com/NickCH-K/did

April 2021


Replying to @peternka

For now, the Stata implementations don't have the richness and options of the R version.

That richness is important. For example, we report multiple aggregations of the ES parameters.

The R package is easy to use and we are happy to share our code or discuss!

Or wait for a user-written Stata package to emerge

Asjad Naqvi @AsjadNaqvi · 15h

Half way done with hard-coding Sant'Anna, Pedro H. C., and Zhao, Jun (2020) DRDID R-package in Stata. The main hurdle is Mata coding for propensity score matching. Took a while to get this exact match to the R output.

experimental re yname	:	grad 1	2	3		4	5	6	7	
tname idname dname w	1	0168279125	.006237643	.0006962939	00026284	.000664	9985 .00001	60856 -1.273	542535 .000	7238796
post y1 y0 D delta¥ intercept	[5ym 1 2 3 4	16.56968726 6.187131496 .5009808221 .1281830305	2 2.87741089 .2165617164 .0384025548		.0038182921					
control	5 6 7 8	.4892017775 .0653057833 2841.000555 .6160526382	.2052684591 .028780705 957.6316493 .2699886328	0	.0027493258 .0005467719 33.92870332 .0038182921	.0217407047 .0025486715 66.44260266 .0217407047	.0029398841 10.38161259 .0029398841	1149471,474 93,79901573	.0266116788	
	: en	đ				_				

*Note:

The DRDID R-package is different from the the Callaway & Sant'Anna estimator for multi-period fixed effects ("DID" package in R). In fact, DID builds on top of DRDID.

DRDID focuses on scenarios with only two time periods (pre-treatment and post-treatment). It essentially reweights by propensity score <u>and</u> controls for vars included in propensity score calculation ... a.k.a. "doubly" robust ("dr")

Crash course in using R

From one novice to another

https://uvastatlab.github.io/phdplus/installR.html

- **A. Download/install** R and RStudio if you've never used either before
 - You need both "R-base" and "RStudio"
- B. Or, check your RStudio version + update to the newest if needed
 - Check for most current version on https://www.r-project.org/ → "R version 4.0.5 (Shake and Throw) has been released on 2021-03-31."

Install packages

In Stata, ssc install

In R, there are two necessary steps:

(1) Install

> install.packages("<package name>")

(2) "activate" the package during each analysis session you plan to use it > library("<package name>")

https://www.datacamp.com/community/tutorials/top-ten-most-important-packages-in-r-for-data-science

Package Info: https://bcallaway11.github.io/did/

Steps

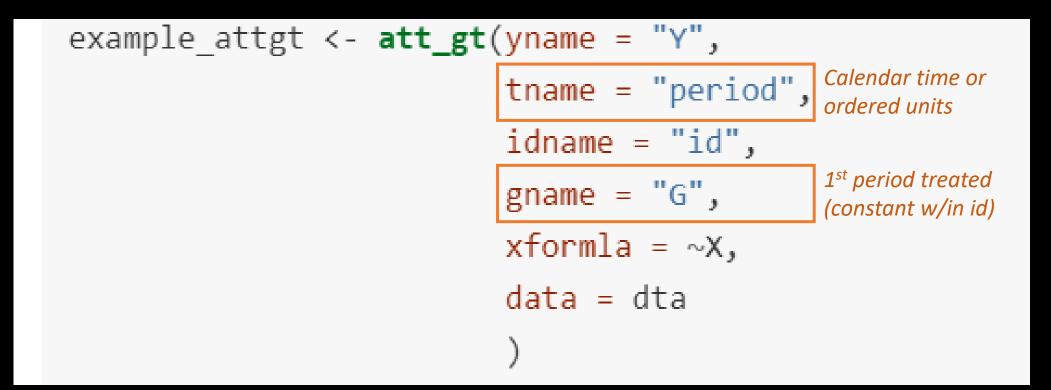
1. Install the Callaway & Sant'Anna package

You can install did from CRAN with:

```
install.packages("did")
```

or get the latest version from github with:

```
# install.packages("devtools")
devtools::install_github("bcallaway11/did")
```


2. Activate the package → library(did)

- 3. Bring in data maindata <- read_dta("D:/TFDW/D_R_mat_201006.dta")
- 4. Implement/run function...

Start with the most basic approach, relying on package defaults

• Function to use in R = "att_gt"

• Function to use in R = "att_gt"

• Function to use in R = "att_gt"

• What use are covariates here?

This feature builds in a DRDID (doubly robust DID) estimator where you:

(1) reweight control units per group-time cohort using propensity score to ensure control units are similar on observables

(2) Partials out variation in outcomes due to covariates, as estimated among control units

Specify pre-treatment <u>covariates</u> that predict treatment or "NULL" for no covariates

$$x form la = \sim X$$
,

In other words, this options controls for covariates + reweights with propensity score

Example produces estimates ATE for groups 2, 3, and 4

Recall group (gname) = first period treated

sur	<pre>summary(example_attgt)</pre>										
#>	Group-1	Time /	Average Ti	reatment Efj	Fects:						
#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]					
#>	2	2	0.9615	0.0593	0.8035	1.1196	7				
#>	2	3	2.0424	0.0587	1.8859	2.1989	*				
#>	2	4	3.0104	0.0601	2.8503	3.1705	*				
#>	3	2	-0.0392	0.0551	-0.1862	0.1077					
#>	3	3	1.0877	0.0617	0.9233	1.2522	*				
#>	3	4	1.9938	0.0589	1.8369	2.1506	*				
#>	4	2	-0.0537	0.0585	-0.2096	0.1022					
#>	4	3	0.0382	0.0563	-0.1119	0.1883					
#>	4	4	0.9410	0.0578	0.7869	1.0951	*				
#>											
#>	Signif.	cod	es: `*' co	onfidence bo	and does not co	over Ø					

#>

#> P-value for pre-test of parallel trends assumption: 0.79243

#> Control Group: Never Treated, Anticipation Periods: 0

#> Estimation Method: Doubly Robust

summary(example_attgt)

Example produces estimates ATE for groups 2, 3, and 4

2

Recall group (gname) = first period treated

#>	Group-1	ime A	verage Ti	reatment Eff	Fects:						
#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]					
#>	2	2	0.9615	0.0593	0.8035	5 1.1196	* <i>Ef</i>	fect in 1	st year t	reated f	for group
#>	2	3	2.0424	0.0587	1.8859	2.1989	*				
#>	2	4	3.0104	0.0601	2.8503	3.1705	*				
#>	3	2	-0.0392	0.0551	-0.1862	0.1077					
#>	3	3	1.0877	0.0617	0.9233	1.2522	*				
#>	3	4	1.9938	0.0589	1.8369	2.1506	*				
#>	4	2	-0.0537	0.0585	-0.2096	0.1022					
#>	4	3	0.0382	0.0563	-0.1119	0.1883					
#>	4	4	0.9410	0.0578	0.7869	1.0951	*				
#>											
#>	Signif.	code	s: `*' co	onfidence bo	and does not o	over 0					
#>											
#>	P-value	for	pre-test	of parallel	. trends assum	ption: 0.792	243				
#>	Control	Grou	p: Never	r Treated,	Anticipation	Periods: 0					
#>	Estimat	ion M	ethod: 1	Doubly Robus	st						

Example produces estimates ATE for groups 2, 3, and 4

Recall group (gname) = first period treated

sum	ummary(example_attgt)											
#>	> Group-Time Average Treatment Effects:											
#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]						
#>	2	2	0.9615	0.0593	0.8035	1.1196	*					
#>	2	3	2.0424	0.0587	1.8859	2.1989	*					
#>	2	4	3.0104	0.0601	2.8503	3.1705	*					
#>	3	2	-0.0392	0.0551	-0.1862	0.1077						
#>	3	3	1.0877	0.0617	0.9233	1.2522	*	Effect in 1 st year treated for group 3				
#>	3	4	1.9938	0.0589	1.8369	2.1506	*					
#>	4	2	-0.0537	0.0585	-0.2096	0.1022						
#>	4	3	0.0382	0.0563	-0.1119	0.1883						
#>	4	4	0.9410	0.0578	0.7869	1.0951	*					
#>												
#>	Signif.	code	s: `*' co	onfidence ba	nd does not co	over Ø						
#>												
#>	P-value	e for	pre-test	of parallel	trends assump	otion: 0.792	243					
#>	Control	Grou	p: Never	Treated,	Anticipation H	Periods: 0						
#>	Estimat	tion M	lethod: D	oubly Robus	t							

Example produces estimates ATE for groups 2, 3, and 4

Recall group (gname) = first period treated

sun	<pre>summary(example_attgt)</pre>										
#>	Group-Time Average Treatment Effects:										
#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]					
#>	2	2	0.9615	0.0593	0.8035	1.1196 *					
#>	2	3	2.0424	0.0587	1.8859	2.1989 *					
#>	2	4	3.0104	0.0601	2.8503	3.1705 *					
#>	3	2	-0.0392	0.0551	-0.1862	0.1077					
#>	3	3	1.0877	0.0617	0.9233	1.2522 *					
#>	3	4	1.9938	0.0589	1.8369	2.1506 *					
#>	4	2	-0.0537	0.0585	-0.2096	0.1022					
#>	4	3	0.0382	0.0563	-0.1119	0.1883					
#>	4	4	0.9410	0.0578	0.7869	1.0951 *					

Effect in 1st year treated for group 4

#> Signif. codes: `*' confidence band does not cover 0

#>

#>

- #> P-value for pre-test of parallel trends assumption: 0.79243
- #> Control Group: Never Treated, Anticipation Periods: 0
- #> Estimation Method: Doubly Robust

Example produces estimates ATE for groups 2, 3, and 4

Recall group (gname) = first period treated

sun	<pre>summary(example_attgt)</pre>										
#>	Group-Time Average Treatment Effects:										
#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]					
#>	2	2	0.9615	0.0593	0.8035	1.1196 *					
#>	2	3	2.0424	0.0587	1.8859	2.1989 *					
#>	2	4	3.0104	0.0601	2.8503	3.1705 *					
#>	3	2	-0.0392	0.0551	-0.1862	0.1077					
#>	3	3	1.0877	0.0617	0.9233	1.2522 *					
#>	3	4	1.9938	0.0589	1.8369	2.1506 *					
#>	4	2	-0.0537	0.0585	-0.2096	0.1022					
#>	4	3	0.0382	0.0563	-0.1119	0.1883					
#>	4	4	0.9410	0.0578	0.7869	1.0951 *					

Effect in 1st year treated for group 4

#> Signif. codes: `*' confidence band does not cover 0

#>

#>

- #> P-value for pre-test of parallel trends assumption: 0.79243
- #> Control Group: Never Treated, Anticipation Periods: 0
- #> Estimation Method: Doubly Robust

What are the group-time point estimates relative to?

summary(example_attgt)

#> ---

#>

- #> Group-Time Average Treatment Effects:
- #> Group Time ATT(g,t) Std. Error [95% Simult. Conf. Band]

#>	2	2	0.9615	0.0593	0.8035	1.1196 *
#>	2	3	2.0424	0.0587	1.8859	2.1989 *
#>	2	4	3.0104	0.0601	2.8503	3.1705 *
#>	3	2	-0.0392	0.0551	-0.1862	0.1077
#>	3	3	1.0877	0.0617	0.9233	1.2522 *
#>	3	4	1.9938	0.0589	1.8369	2.1506 *
#>	4	2	-0.0537	0.0585	-0.2096	0.1022
#>	4	3	0.0382	0.0563	-0.1119	0.1883
#>	4	4	0.9410	0.0578	0.7869	1.0951 *

- #> Signif. codes: `*' confidence band does not cover 0
- #> P-value for pre-test of parallel trends assumption: 0.79243
- #> Control Group: Never Treated, Anticipation Periods: 0
- #> Estimation Method: Doubly Robust

Ρ	re-treatment estimates:
٠	Reference is always the

period before (t= t - 1)*
 *this is why period=1 is not estimated

Post-treatment estimates:

 Reference point is the period before treatment (t= -1)

What are the group-time point estimates relative to?

summary(example_attgt)

#> ---

#>

- #> Group-Time Average Treatment Effects:
- #> Group Time ATT(g,t) Std. Error [95% Simult. Conf. Band]

#>	2	2	0.9615	0.0593	0.8035	1.1196
#>	2	3	2.0424	0.0587	1.8859	2.1989
#>	2	4	3.0104	0.0601	2.8503	3.1705
#>	3	2	-0.0392	0.0551	-0.1862	0.1077
#>	3	3	1.0877	0.0617	0.9233	1.2522
#>	3	4	1.9938	0.0589	1.8369	2.1506
#>	4	2	-0.0537	0.0585	-0.2096	0.1022
#>	4	3	0.0382	0.0563	-0.1119	0.1883
#>	4	4	0.9410	0.0578	0.7869	1.0951
				-		

- #> Signif. codes: `*' confidence band does not cover 0
- #> P-value for pre-test of parallel trends assumption: 0.79243
- #> Control Group: Never Treated, Anticipation Periods: 0
- #> Estimation Method: Doubly Robust

Pre-treatment estimates:

 Reference is always the period before (t= t - 1)* *this is why period=1 is not estimated

Post-treatment estimates:

 Reference point is the period before treatment (t= -1)

sur	<pre>summary(example_attgt)</pre>										
#>	Group-1	Time /	Average Ti	reatment Efj	fects:						
#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]					
#>	2	2	0.9615	0.0593	0.8035	1.1196					
#>	2	3	2.0424	0.0587	1.8859	2.1989					
#>	2	4	3.0104	0.0601	2.8503	3.1705					
#>	3	2	-0.0392	0.0551	-0.1862	0.1077					
#>	3	3	1.0877	0.0617	0.9233	1.2522					
#>	3	4	1.9938	0.0589	1.8369	2.1506					
#>	4	2	-0.0537	0.0585	-0.2096	0.1022					
#>	4	3	0.0382	0.0563	-0.1119	0.1883					
#>	4	4	0.9410	0.0578	0.7869	1.0951					
#>											
			2.44	<i>c</i> · · · · ·		_					

#> Signif. codes: `*' confidence band does not cover 0

#> P-value for pre-test of parallel trends assumption: 0.79243

#> Control Group: Never Treated, Anticipation Periods: 0

#> Estimation Method: Doubly Robust

#>

Built in parallel trends test of all pre-treatment estimates

Default settings shown below results

summary	(example_	_attgt)
---------	-----------	---------

#> Group-Time Average Treatment Effects:

#>	Group	Time	ATT(g,t)	Std. Error	[95% Simult.	Conf. Band]
#>	2	2	0.9615	0.0593	0.8035	1.1196 *
#>	2	3	2.0424	0.0587	1.8859	2.1989 *
#>	2	4	3.0104	0.0601	2.8503	3.1705 *
#>	3	2	-0.0392	0.0551	-0.1862	0.1077
#>	3	3	1.0877	0.0617	0.9233	1.2522 *
#>	3	4	1.9938	0.0589	1.8369	2.1506 *
#>	4	2	-0.0537	0.0585	-0.2096	0.1022
#>	4	3	0.0382	0.0563	-0.1119	0.1883
#>	4	4	0.9410	0.0578	0.7869	1.0951 *

#> ---

#> Signif. codes: `*' confidence band does not cover 0

#>

*#> P-value for pre-test of parallel trends assumption: 0.792*43

#> Control Group: Never Treated, Anticipation Periods: 0

#> Estimation Method: Doubly Robust

Move beyond package defaults

Select Alternative Control Groups

DEFAULT = never treated

• If no never treated, last treated group serves as control group for all prior treated groups (a warning will pop up)

Quick Note on Coding var for "gname"

Make sure to code your "never treated" group as "0"

#Replace missing values of first treatment year to 0 for never treated
dta\$G[is.na(dta\$G)] <- 0</pre>

Move from individual estimates of group-time ATEs by period pre/post treatment to something more useful

Recall, example produces estimates ATE for groups 2, 3, and 4, where group (gname) = first period treated

Function in R = "aggte"

Options for aggregation

- 1. Simple ------ Weighted average of all group time ATEs, weights proportional to group size
- 2. Dynamic/event-study ----> Average group time ATEs at each time point post treatment
- 3. Group-specific Average all post-treatment time points by treatment time group
- 4. Calendar time ----- Average effect per calendar time, for groups treated at that time point

Recall, example produces estimates ATE for groups 2, 3, and 4, where group (gname) = first period treated

Function in R = "aggte"

Options for aggregation

- 1. Simple ------ Weighted average of all group time ATEs, weights proportional to group size
- 3. Group-specific ----- Average all post-treatment time points by treatment time group
- 4. Calendar time ----- Average effect per calendar time, for groups treated at that time point

Recall, example produces estimates ATE for groups 2, 3, and 4, where group (gname) = first period treated

```
Function in R = "aggte"
```

Options for aggregation

- 1. Simple ------ Weighted average of all group time ATEs, weights proportional to group size
- 2. Dynamic/event-study Average group time ATEs at each time point post treatment

3. Group-specific \longrightarrow Average all post-treatment time points by treatment time group

4. Calendar time ----- Average effect per calendar time, for groups treated at that time point

Recall, example produces estimates ATE for groups 2, 3, and 4, where group (gname) = first period treated

```
Function in R = "aggte"
```

Options for aggregation

- 1. Simple ------ Weighted average of all group time ATEs, weights proportional to group size
- 2. Dynamic/event-study Average group time ATEs at each time point post treatment
- 3. Group-specific ----- Average all post-treatment time points by treatment time group

4. Calendar time \longrightarrow Average effect per calendar time, for groups treated at that time point

Recall, example produces estimates ATE for groups 2, 3, and 4, where group (gname) = first period treated

```
Function in R = "aggte"
```

Options for aggregation

- 1. Simple <- aggte(example_attgt, type = "simple")
- 2. Dynamic/event-study agg.es <- aggte(example_attgt, type = "dynamic")</pre>
- 3. Group-specific agg.gs <- aggte(example_attgt, type = "group")</pre>
- 4. Calendar time agg.ct <- aggte(example_attgt, type = "calendar")</pre>

Implementing the Callaway & Sant'Anna Estimator in R

Can specify/customize many other options!

Helpful resources include:

- <u>https://causalinf.substack.com/p/cal</u> <u>laway-and-santanna-dd-estimator</u>
- <u>https://bcallaway11.github.io/did/a</u> <u>rticles/did-basics.html</u>

Recent paper using this method --Gilpin, Karger, Nencka (2021):

 <u>https://www.chicagofed.org/publica</u> <u>tions/working-papers/2021/2021-</u> <u>06</u>

Thanks!